Is a color superconductor topological?

Phys. Rev. D 81, 074004 (2010) [arXiv:1001.2555]

Yusuke Nishida (MIT)

BNL Workshop on "P- and CP-odd Effects in Hot and Dense Matter"

April 28, 2010

Is a color superconductor topological?

Phys. Rev. D 81, 074004 (2010) [arXiv:1001.2555]

- 1. What is topological superconductor?
- 2. Is a color superconductor topological?
- 3. Possible physical implications

What is topological superconductor?

Rapid progress on discovery of new topological states of matter

Examples of topological insulators

- quantum Hall effect (2D) found in 1980
- quantum spin Hall effect (2D) proposed in 2005 / found in 2007
- topological insulators (3D) proposed in 2007 / found in 2008

Examples of topological superconductors

- px+ipy superconductor (2D) possibly realized in Sr2RuO4
- B phase of ³He (3D) based on the seminal paper by N. Read & D. Green in Phys. Rev. B (2000)

•

px+ipy superconductor in 2D

- order parameter $\langle \psi_{-\boldsymbol{p}} \psi_{\boldsymbol{p}} \rangle = (p_x + i p_y) \Delta$
- · mean-field Hamiltonian (in momentum space):

$$\mathcal{H}_{p} = \begin{pmatrix} \frac{p^{2}}{2m} - \mu & (p_{x} + ip_{y}) \Delta \\ (p_{x} - ip_{y}) \Delta & -\frac{p^{2}}{2m} + \mu \end{pmatrix}$$

$$= \vec{h}_{p} \cdot \vec{\sigma} \quad \text{with} \quad \vec{h}_{p} = \begin{pmatrix} p_{x} \Delta, -p_{y} \Delta, \frac{p^{2}}{2m} - \mu \end{pmatrix}$$

• spectrum is gapped for $\mu \neq 0$: $E_p = \left| \vec{h}_p \right| = \sqrt{\left(\frac{p^2}{2m} - \mu \right)^2 + p^2 \Delta^2}$

Vortex zero mode

Bogoliubov-de Genne equation

in the presence of a vortex : $\Delta(x) = e^{i\theta} |\Delta(r)|$

$$\begin{pmatrix} \frac{\hat{p}^2}{2m} - \mu & \frac{1}{2} \left\{ \hat{p}_-, \Delta(\boldsymbol{x}) \right\} \\ \frac{1}{2} \left\{ \hat{p}_+, \Delta^*(\boldsymbol{x}) \right\} & -\frac{\hat{p}^2}{2m} + \mu \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = E \begin{pmatrix} u \\ v \end{pmatrix}$$

with
$$\hat{p}_{\pm} = -i\partial_x \pm \partial_y$$

localized zero energy solution but only for $\mu>0$

(When μ <0, the solution exponentially grows)

$$\begin{pmatrix} u \\ v \end{pmatrix}_{r \to \infty} \to e^{i\frac{\pi}{4}} \begin{pmatrix} 1 \\ -i \end{pmatrix} J_0(\sqrt{2m\mu - (m|\Delta|)^2} r) e^{-m|\Delta|r}$$

Vortex in p_x+ip_y superconductor for $\mu>0$ supports a localized gapless fermion

Gapless edge state

Bogoliubov-de Genne equation in the presence of a boundary

$$\begin{pmatrix} \frac{\hat{p}^2}{2m} - \mu & \hat{p}_- \Delta \\ \hat{p}_+ \Delta & -\frac{\hat{p}^2}{2m} + \mu \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = E \begin{pmatrix} u \\ v \end{pmatrix}$$

localized solution only for $\mu>0$

(When μ <0, the solution exponentially grows)

$$\begin{pmatrix} u \\ v \end{pmatrix}_{x < 0} = e^{-i\frac{\pi}{4}} \begin{pmatrix} 1 \\ i \end{pmatrix} e^{ip_y y + m\Delta x} \cos\left(\sqrt{2m\mu - (m\Delta)^2} x\right)$$

with linear dispersion : $E = \Delta p_y$

Boundary of p_x+ip_y superconductor for $\mu>0$ supports a localized gapless fermion

Topological charge

$$\mathcal{H}_{\mathbf{p}} = \begin{pmatrix} \frac{\mathbf{p}^2}{2m} - \mu & (p_x + ip_y) \Delta \\ (p_x - ip_y) \Delta & -\frac{\mathbf{p}^2}{2m} + \mu \end{pmatrix}$$
$$= \vec{h}_{\mathbf{p}} \cdot \vec{\sigma} \quad \text{with} \quad \vec{h}_{\mathbf{p}} = \begin{pmatrix} p_x \Delta, -p_y \Delta, \frac{\mathbf{p}^2}{2m} - \mu \end{pmatrix}$$

Topological invariant can be defined for a gapped Hamiltonian in momentum space

$$\hat{h}_{p} \equiv \frac{\vec{h}_{p}}{|\vec{h}_{p}|}$$
 is a map from p²-space (\simeq S²) to S² (h-space)

winding number
$$N=\frac{1}{8\pi}\int\!d{m p}\;\epsilon_{ab}\,\epsilon_{ijk}\,\hat{h}_i\,\partial_a\hat{h}_j\,\partial_b\,\hat{h}_k$$

Topological phase transition

$$N = \begin{cases} 1 & \text{for } \mu > 0 \\ 0 & \text{for } \mu < 0 \end{cases}$$
 system is topological! (N≠0) system is not topological (N=0)

topological phase transition

(2 phases cannot be distinguished by symmetries)

- 1. Topological charge "N" can be defined for a gapped Hamiltonian in momentum space
- 2. Topological charge is invariant as long as the gap is open
- 3. The system is topological if N≠0
- 4. A boundary (vortex) supports a localized gapless fermion

- 1. Topological charge "N" can be defined for a gapped Hamiltonian in momentum space
- 2. Topological charge is invariant as long as the gap is open
- 3. The system is topological if N≠0
- 4. A boundary (vortex) supports a localized gapless fermion

Classification of gapped states by topology

A. P. Schnyder et al., Phys. Rev. B (2008) & A. Kitaev, arXiv:0901.2686

Whether the topological charge (Z or Z₂) can be defined is determined by the symmetry and spatial dimension

 $\mathcal{T}^{-1}\mathcal{H}\mathcal{T} = \mathcal{H}^*$ $\mathcal{C}^{-1}\mathcal{H}\mathcal{C} = -\mathcal{H}^*$ $\chi^{-1}\mathcal{H}\chi = -\mathcal{H}$

 $\mathcal{T}^2 = \pm 1 \qquad \qquad \mathcal{C}^2 = \pm 1$

name	Sy	ymmet	ry	d	imensio	n	
	TRS	PHS	SLS	d=1	d=2	d=3	
A	0	0	0	<u>-</u>	\mathbb{Z}		— QHE
AI	+1	0	0	_	_	_	— QSHE
AII	-1	0	0	-	\mathbb{Z}_2	\mathbb{Z}_2	
AIII	0	0	1	\mathbb{Z}	_	\mathbb{Z}	topological insulator
BDI	+1	+1	1	\mathbb{Z}	_	<u>-</u>	
CII	-1	-1	1	\mathbb{Z}	<u>-</u>	\mathbb{Z}_2	
D	0	+1	0	\mathbb{Z}_2	\mathbb{Z}		— p _x +ip _y SC
C	0	-1	0	_	\mathbb{Z}	_	
DIII	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	── ³He-B
CI	+1	-1	1	_	<u> </u>	\mathbb{Z}	

Classification of gapped states by topology

A. P. Schnyder et al., Phys. Rev. B (2008) & A. Kitaev, arXiv:0901.2686

Whether the topological charge (Z or Z₂) can be defined is determined by the symmetry and spatial dimension

name	Sy	ymmet	ry	d	imensio	n	
	TRS	PHS	SLS	d=1	d=2	d=3	
A	0	0	0	_	\mathbb{Z}		— QHE
AI	+1	0	0	_	_	_	— QSHE
AII	-1	0	0	=	\mathbb{Z}_2	\mathbb{Z}_2	
AIII	0	0	1	\mathbb{Z}	_	\mathbb{Z}	topological insulator
BDI	+1	+1	1	\mathbb{Z}	<u>-</u>	<u> </u>	
CII	-1	-1	1	\mathbb{Z}	<u>-</u>	\mathbb{Z}_2	
D	0	+1	0	\mathbb{Z}_2	\mathbb{Z}		— p _x +ip _y SC
C	0	-1	0	_	\mathbb{Z}	<u>-</u>	
DIII	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	—— ³ He-B
CI	+1	-1	1	-	<u> </u>	\mathbb{Z}	

These classifications are for noninteracting Hamiltonians

(open problem for interacting Hamiltonians)

Classification of gapped states by topology

A. P. Schnyder et al., Phys. Rev. B (2008) & A. Kitaev, arXiv:0901.2686

Any (noninteracting) gapped states of matter can be asked if it is topological or not

	TRS	PHS	SLS	d=1	d=2	d=3
A	0	0	0	<u>-</u>	\mathbb{Z}	<u>-</u>
AI	+1	0	0	_		_
AII	-1	0	0	-	\mathbb{Z}_2	\mathbb{Z}_2
AIII	0	0	1	\mathbb{Z}	_	\mathbb{Z}
BDI	+1	+1	1	\mathbb{Z}	<u>-</u>	_
CII	-1	-1	1	\mathbb{Z}	<u>-</u>	\mathbb{Z}_2
D	0	+1	0	\mathbb{Z}_2	\mathbb{Z}	<u>-</u>
C	0	-1	0	_	\mathbb{Z}	_
DIII	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
CI	+1	-1	1	_	_	\mathbb{Z}

Is a color superconductor topological?

Is a color superconductor topological?

Topological charge in 3D

Topological charge for "class DIII" Hamiltonians in 3D

$$(\mathcal{C}^{-1}\mathcal{H}\mathcal{C} = -\mathcal{H}^* \quad \mathcal{T}^{-1}\mathcal{H}\mathcal{T} = \mathcal{H}^* \quad \text{with} \quad \mathcal{C}^2 = 1 \quad \mathcal{T}^2 = -1)$$

Hamiltonian in momentum space

$$\mathcal{H}_{\boldsymbol{p}} = U_{\boldsymbol{p}} \begin{pmatrix} \mathcal{E}_{\boldsymbol{p}} & 0 \\ 0 & -\mathcal{E}_{\boldsymbol{p}} \end{pmatrix} U_{\boldsymbol{p}}^{\dagger}$$

$$\mathcal{Q}_{\boldsymbol{p}} \equiv U_{\boldsymbol{p}} \begin{pmatrix} \mathbb{1} & 0 \\ 0 & -\mathbb{1} \end{pmatrix} U_{\boldsymbol{p}}^{\dagger} \rightarrow \begin{pmatrix} 0 & q_{\boldsymbol{p}} \\ q_{\boldsymbol{p}}^{\dagger} & 0 \end{pmatrix}$$

 $q_p \in U(n)$ is a map from p³-space to unitary matrix

winding number: $\pi_3[\mathrm{U}(n)] = \mathbb{Z} \quad (n \ge 2)$

$$N = \frac{1}{24\pi^2} \int d\mathbf{p} \, \epsilon^{ijk} \, \text{Tr} \left[(q_{\mathbf{p}}^{-1} \partial_i q_{\mathbf{p}}) (q_{\mathbf{p}}^{-1} \partial_j q_{\mathbf{p}}) (q_{\mathbf{p}}^{-1} \partial_k q_{\mathbf{p}}) \right]$$

Color superconductor (mean field)

equal quark masses

$$m_u = m_d = m_s = m$$

color-flavor-locked pairing

$$\left\langle \psi_{a,f}^T C \gamma^5 \psi_{b,g} \right\rangle = \Delta \, \epsilon_{Iab} \epsilon_{Ifg}$$

(parity even : $\Delta_R = \Delta_L$)

All 9 quarks are gapped

each sector is described by

$$\mathcal{H} = \begin{pmatrix} -i\boldsymbol{\alpha} \cdot \boldsymbol{\partial} + \beta m - \mu & \Delta(\boldsymbol{x}) \\ \Delta^*(\boldsymbol{x}) & i\boldsymbol{\alpha} \cdot \boldsymbol{\partial} - \beta m + \mu \end{pmatrix} \otimes 9$$

For comparison, we also consider parity-odd pairing

$$\langle \psi_{a,f}^T C \psi_{b,g} \rangle = \Delta \epsilon_{Iab} \epsilon_{Ifg} \quad \Leftrightarrow \quad \Delta_R = -\Delta_L$$

Topological charge

free-space Hamiltonian with $\Delta(x) = \Delta_0$: constant

In the chiral limit (m=0): $\mathcal{H} = \mathcal{H}_R + \mathcal{H}_L \Rightarrow N = N_R + N_L$

even parity paring

$$N_R = \frac{\Delta_0}{2|\Delta_0|} \qquad N_L = -\frac{\Delta_0}{2|\Delta_0|}$$

topologically nontrivial

$$N = 0$$

topologically trivial

odd parity paring

$$N_R = \frac{\Delta_0}{2|\Delta_0|} \qquad N_L = \frac{\Delta_0}{2|\Delta_0|}$$

$$N = \frac{\Delta_0}{|\Delta_0|} \quad \text{for} \quad m^2 < \mu^2 + \Delta_0^2$$

$$N = 0$$
 for $m^2 > \mu^2 + \Delta_0^2$

Fermion spectrum @ vortex

Fermion spectrum @ vortex

even parity paring

m=0 (NR, NL ≠ 0): 2 localized gapless fermions

- $E = vp_z$ for right-handed
- $E = -vp_z$ for left-handed

m≠0 (N=0): 2 localized fermions become gapped

$$E = \pm v\sqrt{m^2 + p_z^2}$$

Fermion spectrum @ vortex

odd parity paring

m=0 (NR, NL ≠ 0): 2 localized gapless fermions

- $E = vp_z$ for right-handed
- $E = -vp_z$ for left-handed

m $\neq 0$ • $m^2 < \mu^2 + |\Delta(\infty)|^2$ (N $\neq 0$): gaplessness is preserved

• $m^2 > \mu^2 + |\Delta(\infty)|^2$ (N=0): localized fermions disappear

Effective 1D theory @ vortex

Bulk fermions are gapped by $\Delta(r \to \infty)$

Low-energy effective theory should involve (nearly) gapless fermions on a vortex line

$$H_{1D} = \int_{2}^{v} \int \frac{dp_z}{2\pi} \left(p_z \, \psi_{p_z}^{R\dagger} \psi_{p_z}^{R} - p_z \, \psi_{p_z}^{L\dagger} \psi_{p_z}^{L} \right)$$

velocity

$$v = \frac{\int_0^\infty dr \, r \left[J_0^2(\mu r) - J_1^2(\mu r) \right] e^{-2\int_0^r |\Delta(r')| dr'}}{\int_0^\infty dr \, r \left[J_0^2(\mu r) + J_1^2(\mu r) \right] e^{-2\int_0^r |\Delta(r')| dr'}}$$

simple case $\Delta(r) = \Delta$

Majorana fermions

$$\psi_{p_z}^{\mathrm{R}(\mathrm{L})\dagger} = \psi_{-p_z}^{\mathrm{R}(\mathrm{L})}$$

Effective 1D theory @ vortex

Bulk fermions are gapped by $\Delta(r \to \infty)$

Low-energy effective theory should involve (nearly) gapless fermions on a vortex line

$$H_{1D} = \int \frac{dp_z}{2\pi} \left(p_z \, \psi_{p_z}^{R\dagger} \psi_{p_z}^R - p_z \, \psi_{p_z}^{L\dagger} \psi_{p_z}^L + im \, \psi_{p_z}^{R\dagger} \psi_{p_z}^L - im \, \psi_{p_z}^{L\dagger} \psi_{p_z}^R \right)$$

mass term for even parity pairing

velocity

$$v = \frac{\int_0^\infty dr \, r \left[J_0^2(\mu r) - J_1^2(\mu r) \right] e^{-2\int_0^r |\Delta(r')| dr'}}{\int_0^\infty dr \, r \left[J_0^2(\mu r) + J_1^2(\mu r) \right] e^{-2\int_0^r |\Delta(r')| dr'}}$$

simple case $\Delta(r) = \Delta$

Majorana fermions

$$\psi_{p_z}^{\mathrm{R}(\mathrm{L})\dagger} = \psi_{-p_z}^{\mathrm{R}(\mathrm{L})}$$

gapless fermion @ boundary?

gapless fermion @ boundary?

z>0

chiral-broken

vacuum

$$\mu, \Delta = 0$$

m>0

odd parity paring

$$N=0$$

N=1

$$E = \pm v \sqrt{p_x^2 + p_y^2}$$

z<0

color superconductor

 $\mu, \Delta > 0$

m=0

localized gapless fermion

$$H_{\rm 2D} = \frac{v}{2} \int \frac{d\boldsymbol{p}_{\perp}}{(2\pi)^2} \, \psi_{\boldsymbol{p}_{\perp}}^{\dagger} (\boldsymbol{\sigma}_{\perp} \cdot \boldsymbol{p}_{\perp}) \psi_{\boldsymbol{p}_{\perp}}$$

with
$$v = \left| 1 + \frac{m}{\Delta + i\mu} \right| / \left(1 + \frac{m}{\Delta} \right)$$

Majorana fermion : $\psi_{m{p}_\perp}^\dagger = \psi_{-m{p}_\perp}^T \sigma_1$

gapless fermion @ boundary?

Conclusions

Is a color superconductor topological?

Yes, in the chiral limit $(N_R, N_L \neq 0)$

U_B(1) vortex in rotating CFL quark matter supports 9 sets of gapless right- and left-handed quarks

5 on a non-Abelian vortex [Yasui, Itakura, Nitta (arXiv:1001.3730)]

Microscopic origin of axial current flowing on a vortex derived using anomalies $J_z^5 = \frac{\mu}{2\pi} \times (\text{vorticity})$

D. T. Son & A. R. Zhitnisky, Phys. Rev. D (2004)

E

Is a color superconductor topological?

No, with nonzero quark mass (N=0)

localized quarks become gapped

$$E = \pm v\sqrt{m^2 + p_z^2}$$

parametrically lighter than pseudo-NG bosons

$$vm o m \left(\Delta/\mu\right)^2 \ln\left(\mu/\Delta\right) \ \ll \ m_{
m NG} o m \left(\Delta/\mu\right) \ ^{
m D.~T.~Son~\&~M.~A.~Stephanov}$$
 Phys. Rev. D (2000)

could be important low-energy degrees of freedom

- impact on the physics of rotating neutron/quark stars? (transport property, neutrino emissivity, pulser kick, ...)
- topology of Hamiltonian
 ⇔ existence of gapless fermions
- effect of interaction

Backup slides

Topological phase transition

$$N = \begin{cases} 1 & \text{for } \mu > 0 \\ 0 & \text{for } \mu < 0 \end{cases}$$
 system is topological! (N≠0) system is not topological (N=0)

topological phase transition

(2 phases cannot be distinguished by symmetries)

- Topological charge is invariant under the smooth deformation of Hamiltonian
- Topological charge can change only when the gap in spectrum closes

What are physical consequences of nontrivial topology?

We have learned ...

- 1. Topological charge "N" can be defined for a gapped Hamiltonian in momentum space
- 2. Topological charge is invariant as long as the gap is open
- 3. The system is topological if N≠0

- 4. A vortex / boundary supports a localized gapless fermion
- 5. p_x+ip_y superconductor in 2D for $\mu>0$ is one such example

Space of gapped Hamiltonians

